Zack Saadioui
8/26/2024
1
2
bash
ollama pull llama31
2
bash
ollama list1
2
bash
ollama run llama31
2
3
4
bash
python -m venv langchain-env
source langchain-env/bin/activate  # For Mac/Linux
langchain-env\Scripts\activate  # For Windows1
2
bash
pip install langchain-ollama1
OllamaEmbeddings1 2 3 4# Example text to work with text = "LangChain framework allows you to create applications using LLMs effectively!" vector = embeddings.embed_query(text) print(vector) # Will print your embedding vector!
1
2
3
4
5
6
7
8
9
python
def embed_multiple_documents(embeddings):
    texts = [
        "LangChain integrates with various models to provide flexibility across tasks.",
        "Ollama makes it easier to run models locally without heavy hardware needs."
    ]
    vectors = embeddings.embed_documents(texts)
    for vector in vectors:
        print(vector[:10])  # Print first 10 elements of each vector1
embed_documents1
2
3
4
5
6
python
def retrieve_info(vectorstore):
    retriever = vectorstore.as_retriever()
    query = "What do dogs represent?"
    retrieved_documents = retriever.invoke(query)
    print(retrieved_documents[0].page_content)Copyright © Arsturn 2025