Zack Saadioui
8/24/2024
1
2
bash
pip install langchain-qdrant qdrant-client langchain-openai1
2
3
python
from qdrant_client import QdrantClient
qdrant_client = QdrantClient("http://localhost:6333")1
2
3
4
5
python
qdrant_client.create_collection(
    collection_name="my_vectors",  
    vectors_config={"size": 768, "distance": "Cosine"}
)1
2
3
4
5
6
7
8
9
python
from langchain_qdrant import QdrantVectorStore
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vector_store = QdrantVectorStore(
    client=qdrant_client,
    collection_name="my_vectors",
    embedding=embeddings
)1
2
3
4
python
from langchain.document_loaders import TextLoader
loader = TextLoader("path/to/your/textfile.txt")
documents = loader.load()1
2
python
vector_store.add_documents(documents)1
2
3
4
5
python
query = "What are the uses of AI in modern applications?"
results = vector_store.similarity_search(query)
for res in results:
    print(res.page_content, res.metadata)1
2
3
4
5
python
embedding_vector = embeddings.embed_query(query)
results = vector_store.similarity_search_by_vector(embedding_vector)
for res in results:
    print(res.page_content, res.metadata)1
hnsw_efCopyright © Arsturn 2025